41 research outputs found

    Automatic colonic polyp detection using curvature analysis for standard and low dose CT data

    Get PDF
    Colon cancer is the second leading cause of cancer related deaths in the developed nations. Early detection and removal of colorectal polyps via screening is the most effective way to reduce colorectal cancer (CRC) mortality. Computed Tomography Colonography (CTC) or Virtual Colonoscopy (VC) is a rapidly evolving non-invasive technique and the medical community view this medical procedure as an alternative to the standard colonoscopy for the detection of colonic polyps. In CTC the first step for automatic polyp detection for 3D visualization of the colon structure and automatic polyp detection addresses the segmentation of the colon lumen. The segmentation of colon lumen is far from a trivial task as in practice many datasets are collapsed due to incorrect patient preparation or blockages caused by residual water/materials left in the colon. In this thesis a robust multi-stage technique for automatic segmentation of the colon is proposed tha t maximally uses the anatomical model of a generic colon. In this regard, the colon is reconstructed using volume by length analysis, orientation, length, end points, geometrical position in the volumetric data, and gradient of the centreline of each candidate air region detected in the CT data. The proposed method was validated using a total of 151 standard dose (lOOmAs) and 13 low-dose (13mAs-40mAs) datasets and the collapsed colon surface detection was always higher than 95% with an average of 1.58% extra colonic surface inclusion. The second major step of automated CTC attempts the identification of colorectal polyps. In this thesis a robust method for polyp detection based on surface curvature analysis has been developed and evaluated. The convexity of the segmented colon surface is sampled using the surface normal intersection, Hough transform, 3D histogram, Gaussian distribution, convexity constraint and 3D region growing. For each polyp candidate surface the morphological and statistical features are extracted and the candidate surface is classified as a polyp/fold structure using a Feature Normalized Nearest Neighbourhood classifier. The devised polyp detection scheme entails a low computational overhead (typically takes 3.60 minute per dataset) and shows 100% sensitivity for polyps larger than 10mm, 92% sensitivity for polyps in the range 5 to 10mm and 64.28% sensitivity for polyp smaller than 5mm. The developed technique returns in average 4.01 false positives per dataset. The patient exposure to ionising radiation is the major concern in using CTC as a mass screening technique for colonic polyp detection. A reduction of the radiation dose will increase the level of noise during the acquisition process and as a result the quality of the CT d a ta is degraded. To fully investigate the effect of the low-dose radiation on the performance of automated polyp detection, a phantom has been developed and scanned using different radiation doses. The phantom polyps have realistic shapes (sessile, pedunculated, and flat) and sizes (3 to 20mm) and were designed to closely approximate the real polyps encountered in clinical CT data. Automatic polyp detection shows 100% sensitivity for polyps larger than 10mm and shows 95% sensitivity for polyps in the range 5 to 10mm. The developed method was applied to CT data acquired at radiation doses between 13 to 40mAs and the experimental results indicate th a t robust polyp detection can be obtained even at radiation doses as low as 13mAs

    The use of 3D surface fitting for robust polyp detection and classification in CT colonography

    Get PDF
    In this paper we describe the development of a computationally efficient computer-aided detection (CAD) algorithm based on the evaluation of the surface morphology that is employed for the detection of colonic polyps in computed tomography (CT) colonography. Initial polyp candidate voxels were detected using the surface normal intersection values. These candidate voxels were clustered using the normal direction, convexity test, region growing and Gaussian distribution. The local colonic surface was classified as polyp or fold using a feature normalized nearest neighborhood classifier. The main merit of this paper is the methodology applied to select the robust features derived from the colon surface that have a high discriminative power for polyp/fold classification. The devised polyp detection scheme entails a low computational overhead (typically takes 2.20 min per dataset) and shows 100% sensitivity for phantom polyps greater than 5 mm. It also shows 100% sensitivity for real polyps larger than 10 mm and 91.67% sensitivity for polyps between 5 to 10 mm with an average of 4.5 false positives per dataset. The experimental data indicates that the proposed CAD polyp detection scheme outperforms other techniques that identify the polyps using features that sample the colon surface curvature especially when applied to low-dose datasets

    Evaluation of 3D gradient filters for estimation of the surface orientation in CTC

    Get PDF
    The extraction of the gradient information from 3D surfaces plays an important role for many applications including 3D graphics and medical imaging. The extraction of the 3D gradient information is performed by filtering the input data with high pass filters that are typically implemented using 3×3×3 masks. Since these filters extract the gradient information in small neighborhood, the estimated gradient information will be very sensitive to image noise. The development of a 3D gradient operator that is robust to image noise is particularly important since the medical datasets are characterized by a relatively low signal to noise ratio. The aim of this paper is to detail the implementation of an optimized 3D gradient operator that is applied to sample the local curvature of the colon wall in CT data and its influence on the overall performance of our CAD-CTC method. The developed 3D gradient operator has been applied to extract the local curvature of the colon wall in a large number CT datasets captured with different radiation doses and the experimental results are presented and discussed

    A fully automatic CAD-CTC system based on curvature analysis for standard and low-dose CT data

    Get PDF
    Computed tomography colonography (CTC) is a rapidly evolving noninvasive medical investigation that is viewed by radiologists as a potential screening technique for the detection of colorectal polyps. Due to the technical advances in CT system design, the volume of data required to be processed by radiologists has increased significantly, and as a consequence the manual analysis of this information has become an increasingly time consuming process whose results can be affected by inter- and intrauser variability. The aim of this paper is to detail the implementation of a fully integrated CAD-CTC system that is able to robustly identify the clinically significant polyps in the CT data. The CAD-CTC system described in this paper is a multistage implementation whose main system components are: 1) automatic colon segmentation; 2) candidate surface extraction; 3) feature extraction; and 4) classification. Our CAD-CTC system performs at 100% sensitivity for polyps larger than 10 mm, 92% sensitivity for polyps in the range 5 to 10 mm, and 57.14% sensitivity for polyps smaller than 5 mm with an average of 3.38 false positives per dataset. The developed system has been evaluated on synthetic and real patient CT data acquired with standard and low-dose radiation levels

    Determining candidate polyp morphology from CT colonography using a level-set method

    Get PDF
    In this paper we propose a level-set segmentation for polyp candidates in Computer Tomography Colongraphy (CTC). Correct classification of the candidate polyps into polyp and non-polyp is, in most cases, evaluated using shape features. Therefore, accurate recovery of the polyp candidate surface is important for correct classification. The method presented in this paper, evolves a curvature and gradient dependent boundary to recover the surface of the polyp candidate in a level-set framework. The curvature term is computed using a combination of the Mean curvature and the Gaussian curvature. The results of the algorithm were run through a classifier for two complete data-sets and returned 100% sensitivity for polyps greater than 5mm

    Automatic lung nodule detection from chest CT data using geometrical features: initial results

    Get PDF
    In this paper, a complete system for automatic lung nodule detection from Chest CT data is proposed. The proposed system includes the methods of lung segmentation and nodule detection from CT data. The algorithm for lung segmentation consists ofsurrounding air voxel removal, body fat/tissue identification, trachea detection, and pulmonary vessels segmentation. The nodule detection algorithm comprises of candidate surface generation, geometrical feature generation and classification. The proposed system shows 88.2% sensitivity for nodule >=3mm with 8.91 false positive per dataset

    A quantitative assessment of 3D facial key point localization fitting 2D shape models to curvature information

    Get PDF
    This work addresses the localization of 11 prominent facial landmarks in 3D by fitting state of the art shape models to 2D data. Quantitative results are provided for 34 scans at high resolution (texture maps of 10 M-pixels) in terms of accuracy (with respect to manual measurements) and precision (repeatability on different images from the same individual). We obtain an average accuracy of approximately 3 mm, and median repeatability of inter-landmark distances typically below 2 mm, which are values comparable to current algorithms on automatic localization of facial landmarks. We also show that, in our experiments, the replacement of texture information by curvature features produced little change in performance, which is an important finding as it suggests the applicability of the method to any type of 3D data

    Development of a synthetic phantom for the selection of optimal scanning parameters in CAD-CT colonography

    Get PDF
    The aim of this paper is to present the development of a synthetic phantom that can be used for the selection of optimal scanning parameters in computed tomography (CT) colonography. In this paper we attempt to evaluate the influence of the main scanning parameters including slice thickness, reconstruction interval, field of view, table speed and radiation dose on the overall performance of a computer aided detection (CAD)–CTC system. From these parameters the radiation dose received a special attention, as the major problem associated with CTC is the patient exposure to significant levels of ionising radiation. To examine the influence of the scanning parameters we performed 51 CT scans where the spread of scanning parameters was divided into seven different protocols. A large number of experimental tests were performed and the results analysed. The results show that automatic polyp detection is feasible even in cases when the CAD–CTC system was applied to low dose CT data acquired with the following protocol: 13 mAs/rotation with collimation of 1.5 mm × 16 mm, slice thickness of 3.0 mm, reconstruction interval of 1.5 mm, table speed of 30 mm per rotation. The CT phantom data acquired using this protocol was analysed by an automated CAD–CTC system and the experimental results indicate that our system identified all clinically significant polyps (i.e. larger than 5 mm)

    COV-ECGNET: COVID-19 detection using ECG trace images with deep convolutional neural network

    Get PDF
    The reliable and rapid identification of the COVID-19 has become crucial to prevent the rapid spread of the disease, ease lockdown restrictions and reduce pressure on public health infrastructures. Recently, several methods and techniques have been proposed to detect the SARS-CoV-2 virus using different images and data. However, this is the first study that will explore the possibility of using deep convolutional neural network (CNN) models to detect COVID-19 from electrocardiogram (ECG) trace images. In this work, COVID-19 and other cardiovascular diseases (CVDs) were detected using deep-learning techniques. A public dataset of ECG images consisting of 1937 images from five distinct categories, such as normal, COVID-19, myocardial infarction (MI), abnormal heartbeat (AHB), and recovered myocardial infarction (RMI) were used in this study. Six different deep CNN models (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, and MobileNetv2) were used to investigate three different classification schemes: (i) two-class classification (normal vs COVID-19); (ii) three-class classification (normal, COVID-19, and other CVDs), and finally, (iii) five-class classification (normal, COVID-19, MI, AHB, and RMI). For two-class and three-class classification, Densenet201 outperforms other networks with an accuracy of 99.1%, and 97.36%, respectively; while for the five-class classification, InceptionV3 outperforms others with an accuracy of 97.83%. ScoreCAM visualization confirms that the networks are learning from the relevant area of the trace images. Since the proposed method uses ECG trace images which can be captured by smartphones and are readily available facilities in low-resources countries, this study will help in faster computer-aided diagnosis of COVID-19 and other cardiac abnormalities
    corecore